Nas semanas anteriores, estudamos
- Linguagens
Componentes curriculares: Língua Portuguesa, Arte, Educação Física, Língua Inglesa.
Agora, vamos estudar um pouco sobre
- Matemática
Componente curricular: Matemática.
BNCC foca no que o aluno precisa desenvolver para que o conhecimento matemático seja ferramenta para ler, compreender e transformar a realidade.
É interessantes como a Matemática é conceituada enquanto “ciência humana, fruto das necessidades e preocupações de diferentes culturas, em diferentes momentos históricos” e, ainda, “uma ciência viva, que contribui para solucionar problemas científicos e tecnológicos e para alicerçar descobertas e construções”.
A Base foca no que o aluno precisa desenvolver, para que o conhecimento matemático seja uma ferramenta para ler, compreender e transformar a realidade.
"O Ensino Fundamental deve ter compromisso com o desenvolvimento do letramento matemático, definido como as competências e habilidades de raciocinar, representar, comunicar e argumentar matematicamente, de modo a favorecer o estabelecimento de conjecturas, a formulação e a resolução de problemas em uma variedade de contextos, utilizando conceitos, procedimentos, fatos e ferramentas matemáticas. É também o letramento matemático que assegura aos alunos reconhecer que os conhecimentos matemáticos são fundamentais para a compreensão e a atuação no mundo e percebe o caráter de jogo intelectual da matemática, como aspecto que favorece o desenvolvimento do raciocínio lógico e crítico, estimula a investigação e pode ser prazeroso (fruição)" BNCC
CONTINUANDO
"Os processos matemáticos de resolução de problemas, de investigação, de desenvolvimento de projetos e da modelagem podem ser citados como formas privilegiadas da atividade matemática, motivo pelo qual são, ao mesmo tempo, objeto e estratégia para a aprendizagem ao longo de todo o Ensino Fundamental. Esses processos de aprendizagem são potencialmente ricos para o desenvolvimento de competências fundamentais para o letramento matemático: raciocínio, representação, comunicação e argumentação."
Não se trata de um “adiantamento” do conteúdo, mas de trabalhar desde o início do Fundamental um modo de pensar que será utilizado mais tarde, quando conteúdos como Equações – típico da álgebra – ou cálculos de probabilidade entrarem em cena.
As noções de igualdade e equivalência, que depois ajudam a compreender o conceito de equações, podem ser trabalhados ao pensar em como diferentes somas podem sempre dar o mesmo resultado.
NÚMEROS
No Ensino Fundamental – Anos Iniciais, a expectativa em relação a essa temática é que os alunos resolvam problemas com números naturais e números racionais cuja representação decimal é finita, envolvendo diferentes significados das operações, argumentem e justifiquem os procedimentos utilizados para a resolução e avaliem a plausibilidade dos resultados encontrados. No tocante aos cálculos, espera-se que os alunos desenvolvam diferentes estratégias para a obtenção dos resultados, sobretudo por estimativa e cálculo mental, além de algoritmos e uso de calculadoras. Nessa fase espera-se também o desenvolvimento de habilidades no que se refere à leitura, escrita e ordenação de números naturais e números racionais por meio da identificação e compreensãode características do sistema de numeração decimal, sobretudo o valor posicional dos algarismos. Na perspectiva de que os alunos aprofundem a noção de número, é importante colocá-los diante de tarefas, como as que envolvem medições, nas quais os números naturais não são suficientes para resolvê-las, indicando a necessidade dos números racionais tanto na representação decimal quanto na fracionária
ÁLGEBRA
(...) é imprescindível que algumas dimensões do trabalho com a álgebra estejam presentes nos processos de ensino e aprendizagem desde o Ensino Fundamental – Anos Iniciais, como as ideias de regularidade, generalização de padrões e propriedades da igualdade. No entanto, nessa fase, não se propõe o uso de letras para expressar regularidades, por mais simples que sejam. A relação dessa unidade temática com a de Números é bastante evidente no trabalho com sequências (recursivas e repetitivas), seja na ação de completar uma sequência com elementos ausentes, seja na construção de sequências segundo uma determinada regra de formação. A relação de equivalência pode ter seu início com atividades simples, envolvendo a igualdade, como reconhecer que se 2 + 3 = 5 e 5 = 4 + 1, então 2 + 3 = 4 + 1. Atividades como essa contribuem para a compreensão de que o sinal de igualdade não é apenas a indicação de uma operação a ser feita. A noção intuitiva de função pode ser explorada por meio da resolução de problemas envolvendo a variação proporcional direta entre duas grandezas (sem utilizar a regra de três), como: “Se com duas medidas de suco concentrado eu obtenho três litros de refresco, quantas medidas desse suco concentrado eu preciso para ter doze litros de refresco?”
GEOMETRIA
No Ensino Fundamental – Anos Iniciais, espera-se que os alunos identifiquem e estabeleçam pontos de referência para a localização e o deslocamento de objetos, construam representações de espaços conhecidos e estimem distâncias, usando, como suporte, mapas (em papel, tablets ou smartphones), croquis e outras representações. Em relação às formas, espera-se que os alunos indiquem características das formas geométricas tridimensionais e bidimensionais, associem figuras espaciais a suas planificações e vice-versa. Espera-se, também, que nomeiem e comparem polígonos, por meio de propriedades relativas aos lados, vértices e ângulos. O estudo das simetrias deve ser iniciado por meio da manipulação de representações de figuras geométricas planas em quadriculados ou no plano cartesiano, e com recurso de softwares de geometria dinâmica.
GRANDEZAS E MEDIDAS
No Ensino Fundamental – Anos Iniciais, a expectativa é que os alunos reconheçam que medir é comparar uma grandeza com uma unidade e expressar o resultado da comparação por meio de um número. Além disso, devem resolver problemas oriundos de situações cotidianas que envolvem grandezas como comprimento, massa, tempo, temperatura, área (de triângulos e retângulos) e capacidade e volume (de sólidos formados por blocos retangulares), sem uso de fórmulas, recorrendo, quando necessário, a transformações entre unidades de medidas padronizadas mais usuais. Espera-se, também, que resolvam problemas sobre situações de compra e venda e desenvolvam, por exemplo, atitudes éticas e responsáveis em relação ao consumo. Sugere-se que esse processo seja iniciado utilizando, preferencialmente, unidades não convencionais para fazer as comparações e medições, o que dá sentido à ação de medir, evitando a ênfase em procedimentos de transformação de unidades convencionais. No entanto, é preciso considerar o contexto em que a escola se encontra: em escolas de regiões agrícolas, por exemplo, as medidas agrárias podem merecer maior atenção em sala de aula.
PROBABILIDADE E ESTATÍSTICA
No que concerne ao estudo de noções de probabilidade, a finalidade, no Ensino Fundamental – Anos Iniciais, é promover a compreensão de que nem todos os fenômenos são determinísticos. Para isso, o início da proposta de trabalho com probabilidade está centrado no desenvolvimento da noção de aleatoriedade, de modo que os alunos compreendam que há eventos certos, eventos impossíveis e eventos prováveis. É muito comum que pessoas julguem impossíveis eventos que nunca viram acontecer. Nessa fase, é importante que os alunos verbalizem, em eventos que envolvem o acaso, os resultados que poderiam ter acontecido em oposição ao que realmente aconteceu, iniciando a construção do espaço amostral. No Ensino Fundamental – Anos Finais, o estudo deve ser ampliado e aprofundado, por meio de atividades nas quais os alunos façam experimentos aleatórios e simulações para confrontar os resultados obtidos com a probabilidade teórica – probabilidade frequentista. A progressão dos conhecimentos se faz pelo aprimoramento da capacidade de enumeração dos elementos do espaço amostral, que está associada, também, aos problemas de contagem. Com relação à estatística, os primeiros passos envolvem o trabalho com a coleta e a organização de dados de uma pesquisa de interesse dos alunos. O planejamento de como fazer a pesquisa ajuda a compreender o papel da estatística no cotidiano dos alunos. Assim, a leitura, a interpretação e a construção de tabelas e gráficos têm papel fundamental, bem como a forma de produção de texto escrito para a comunicação de dados, pois é preciso compreender que o texto